Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 850
Filter
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 178-187, 2024.
Article in Chinese | WPRIM | ID: wpr-1006519

ABSTRACT

Objective@#To explore the molecular mechanism of resveratrol (RES) in the treatment of oral squamous cell carcinoma (OSCC) through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.@*Methods@#The Swiss Target Prediction(http://www.swisstargetprediction.ch), SEA (http://sea.bkslab.org)database, and Pharm mapper database(http://lilab-ecust.cn) were used to retrieve RES-related targets, and the DISGENET (www.disgenet.org), OMIM (https://omim.org) and GeneCards (https://www.genecards.org) databases were used to screen OSCC disease targets. The intersection of drugs and disease targets was determined, and Cytoscape 3.7.2 software was used to construct a "drug-diseasetarget pathway" network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to construct a target protein interaction network, and the DAVID database was used for enrichment analysis of key proteins. Finally, molecular docking validation of key proteins was performed using AutoDock and PyMOL. The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC; western blot was used to determine the effect of resveratrol at different concentrations (50, 100) μmol/L on the expression of Src tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), estrogen receptor gene 1 (ESR1), and phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway proteins in OSCC HSC-3 cells.@*Results@#A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified. A total of 116 potential common targets were obtained by intersecting drugs with disease targets. These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation, peptide tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway, and positive regulation of RNA polymerase Ⅱ promoter transcription, and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects. The docking results of resveratrol with OSCC molecules indicated that key targets, such as EGFR, ESR1, and SRC, have good binding activity. The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC, EGFR, ESR1, p-PI3K, and p-AKT in HSC-3 cells in a dose-dependent manner.@*Conclusion@#RES can inhibit the expression of its targets EGFR, ESR1, SRC, p-PI3K, and p-AKT in OSCC cells.

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 89-100, 2024.
Article in Chinese | WPRIM | ID: wpr-1006353

ABSTRACT

Objective@#To investigate the potential caries prevention mechanism of the Xinjiang Mori cortex and to analyze its effect on the main cariogenic bacteria.@*Methods@#The active components of the Xinjiang Mori cortex and the main targets were predicted and screened using the TCMSP database. The GeneCards, DisGENET and TTD databases were used to obtain caries-related targets. The common targets were derived, and core genes were screened. The enrichment analysis was performed using the DAVID data platform. Molecular docking was performed using AutoDock software. In in vitro antibacterial experiments, first, the 50% minimum inhibitory concentration (MIC50) and the minimum bactericidal concentration (MBC) of the Xinjiang Mori Cortex extract against Streptococcus mutans, Streptococcus sanguis and Actinomyces viscosus were determined and the growth curves were measured. The effects of the Xinjiang Mori Cortex extract on acid production, polysaccharide production and adhesion ability of Streptococcus mutans, Streptococcus sanguis and Actinomyces viscosus in the planktonic state were determined. The 50% minimum biofilm inhibition concentration (MBIC50) and 50% minimum biofilm reduction concentration (MBRC50) were determined by crystal violet staining, and biofilm morphology was visualized using scanning electron microscopy (SEM).@*Results@#The main active components of the Xinjiang Mori cortex included quercetin, kaempferol, and β-sitosterol. Tumor necrosis factor (TNF), interleukin-6 (IL-6), and interleukin-1beta (IL-1β) could be the most important targets of the Xinjiang Mori cortex for the prevention of dental caries. The enrichment analysis results showed that Mori cortex extract may have effects on the AGE-RAGE signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. The antibacterial experiment results showed that the MIC50 values of Xinjiang Mori Cortex extract against Streptococcus mutans, Streptococcus sanguis and Actinomyces viscosus were 0.5, 0.5 and 0.25 mg/mL, respectively, and the MBCs were 4.0, 2.0 and 1.0 mg/mL, respectively. The inhibitory effect of Xinjiang Mori Cortex extract on the acid production, polysaccharide production and adhesion ability of three major cariogenic bacteria in the planktonic state was stronger than that of the control group, and the differences were statistically significant (P<0.05). The MBIC50 was 1.0, 1.0, and 0.5 mg/mL, and the MBRC50 was 4.0, 4.0, and 2.0 mg/mL. SEM observation showed that the amount of biofilm formation decreased with the drug concentration compared with the control group.@*Conclusion@#Xinjiang Mori cortex extract can prevent caries through quercetin, kaempferol, and β-sitosterol active ingredients, TNF、IL-6、IL-1β key targets and multiple pathways and inhibit the growth, acid production, polysaccharide production, and adhesion ability of three major cariogenic bacteria in the planktonic state and has some inhibitory effect on corticogenic biofilm formation.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 176-185, 2024.
Article in Chinese | WPRIM | ID: wpr-1006283

ABSTRACT

In order to promote the innovative application of Sanjiao theory and Yingwei theory, this paper tries to apply the ''Sanjiao-Yingwei'' Qi transformation theory to the treatment of tumor diseases, integrating it with T cell exhaustion mechanism to elaborate on its scientific connotation and using network pharmacology and bioinformatics to elucidate the correlation between the anti-tumor mechanism of ''Sanjiao-Yingwei'' Qi transformation and T cell exhaustion. The ''Sanjiao-Yingwei'' Qi transformation function is closely related to the immunometabolic ability of the human body, and the ''Sanjiao-Yingwei'' Qi transformation system constitutes the immunometabolic exchange system within and outside the cellular environment. Cancer toxicity is generated by the fuzzy Sanjiao Qi, and the long-term fuzzy Sanjiao Qi is the primary factor leading to T cell exhaustion, which is related to the long-term activation of T cell receptors by the high tumor antigen load in the tumor microenvironment. Qi transformation malfunction of the Sanjiao produces phlegm and collects stasis, which contributes to T cell exhaustion and is correlated with nutrient deprivation, lipid accumulation, and high lactate levels in the immunosuppressed tumor microenvironment, as well as with the release of transforming growth factor-β and upregulated expression of programmed death receptor-1 by tumor-associated fibroblasts and platelets in the tumor microenvironment. Ying and Wei damage due to Sanjiao Qi transformation malfunction is similar to the abnormal manifestations such as progressive loss of exhausted T cell effector function and disturbance of cellular energy metabolism. Guizhi decoction, Shengming decoction, and Wendan decoction can correct T cell exhaustion and exert anti-tumor effects through multi-target and multi-pathways by regulating ''Sanjiao-Yingwei'' Qi transformation, and hypoxia inducible factor-1α (HIF-1α) may be one of the main pathways to correct T cell exhaustion. It was found that HIF-1α may be one of the important prognostic indicators in common tumors by bioinformatics. The use of the ''Sanjiao-Yingwei'' Qi transformation method may play an important part in improving the prognosis of tumor patients in clinical practice.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 72-79, 2024.
Article in Chinese | WPRIM | ID: wpr-1006270

ABSTRACT

ObjectiveTo study the mechanism of astragaloside Ⅳ (AS Ⅳ) on db/db mice with type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) based on network pharmacology and experimental validation. MethodA total of 24 db/db mice were randomly divided into four groups: model group, metformin group, and low-dose and high-dose AS Ⅳ groups. Six C57 mice were used as the blank group. The low-dose and high-dose AS Ⅳ groups were given AS Ⅳ of 0.015 and 0.030 g·kg-1 by gavage, and the metformin group was given 0.067 g·kg-1 by gavage. The blank and model groups were given equal volumes of distilled water by gavage. After intragastric administration, fasting blood glucose (FBG) was detected, and an oral glucose tolerance test was performed. Serum lipid level and liver histopathology were detected. The target and enrichment pathway of AS Ⅳ for treating T2DM and NAFLD were predicted by network pharmacology, and the main enrichment pathway was verified by molecular biology techniques. The protein expressions of AMPK, p-AMPK, sterol regulatory element-binding protein-1 (SREBP-1), and fatty acid synthetase (FAS) in liver tissue were detected by Western blot. ResultCompared with the blank group, the levels of body mass, liver weight coefficient, fasting blood glucose, serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol in mice treated with AS Ⅳ were decreased (P<0.05, P<0.01). The pathology of liver tissue showed significant improvement in lipid accumulation, and imaging results showed that the degree of fatty liver was reduced after AS Ⅳ therapy. Network pharmacological prediction results showed that vascular endothelial growth factor α (VEGFA), galactoagglutinin 3 (LGALS3), serine/threonine kinase B2 (Akt2), RHO-associated coiled-coil protein kinase 1 (ROCK1), serine/threonine kinase B1 (Akt1), signaling and transcriptional activator protein (STAT3), and messtimal epidermal transformation factor (MET) were key targets in "drug-disease" network. The results from the Kyoto encyclopedia of genes and genomes (KEGG) enrichment showed that the AMP-dependent protein kinase (AMPK) signaling pathway was strongly associated with T2DM and NAFLD. Western blot results showed that compared with the blank group, the expression levels of p-AMPK/AMPK in the model group were significantly down-regulated, while those of SREBP-1 and FAS proteins were significantly up-regulated (P<0.01). Compared with the model group, the expression levels of p-AMPK/AMPK in the metformin group and high-dose AS Ⅳ group were significantly up-regulated, while those of SREBP-1 and FAS proteins were significantly down-regulated (P<0.05, P<0.01). ConclusionAS Ⅳ regulates the expression of lipid proteins by activating the AMPK signaling pathway, thereby improving lipid metabolism.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 28-34, 2024.
Article in Chinese | WPRIM | ID: wpr-1006265

ABSTRACT

ObjectiveTo establish an ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry(UHPLC-QqQ-MS) for determination of the active ingredients in Erdongtang, and to predict the targets and pathways of anti-insulin resistance action of this formula. MethodThe analysis was performed on an ACQUITY UPLC BEH C18 column(2.1 mm×100 mm, 1.7 μm) with the mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B) for gradient elution(0-3 min, 90%-87%A; 3-6 min, 87%-86%A; 6-9 min, 86%-83%A; 9-11 min, 83%-75%A; 11-18 min, 75%-70%A; 18-19 min, 70%-52%A; 19-22 min, 52%A; 22-25 min, 52%-5%A; 25-27 min, 5%-90%A; 27-30 min, 90%A). The contents of active ingredients in Erdongtang was detected by electrospray ionization(ESI) and multiple reaction monitoring(MRM) mode under positive and negative ion modes. On this basis, network pharmacology was applied to predict the targets and pathways of Erdongtang exerting anti-insulin resistance effect. ResultThe 20 active ingredients in Erdongtang showed good linear relationships within a certain mass concentration range, and the precision, stability, repeatability and recovery rate were good. The results of determination showed that the ingredients with high content in 15 batches of samples were baicalein(1 259.39-1 635.78 mg·L-1), baicalin(1 078.37-1 411.52 mg·L-1), the ingredients with medium content were mangiferin(148.59-217.04 mg·L-1), timosaponin BⅡ(245.10-604.89 mg·L-1), quercetin-3-O-glucuronide(89.30-423.26 mg·L-1), rutin(46.91-1 553.61 mg·L-1), glycyrrhizic acid(55.97-391.47 mg·L-1), neomangiferin(37.45-127.03 mg·L-1), nuciferine(0.89-63.48 mg·L-1), hyperoside(6.96-136.78 mg·L-1), liquiritin(30.89-122.78 mg·L-1), liquiritigenin(26.64-110.67 mg·L-1), protodioscin(58.57-284.26 mg·L-1), the ingredients with low content were wogonin(7.16-20.74 mg·L-1), pseudoprotodioscin(5.49-22.96 mg·L-1), ginsenoside Rb1(7.31-23.87 mg·L-1), ginsenoside Rg1(10.78-28.33 mg·L-1), ginsenoside Re(7.78-24.76 mg·L-1), ophiopogonin D(2.08-4.29 mg·L-1), methylophiopogonanone A(0.74-1.67 mg·L-1). The results of network pharmacology indicated that the mechanism of anti-insulin resistance exerted by Erdongtang might be related to the phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathway. ConclusionThe established UHPLC-QqQ-MS has the advantages of simple sample processing, strong exclusivity and high sensitivity, and can simultaneously determine the contents of the main ingredients from seven herbs in Erdongtang, which can lay the foundation for the development of Erdongtang compound preparations. The results of the network pharmacology can provide a reference for the mechanism study of Erdongtang in the treatment of type 2 diabetes mellitus.

6.
Journal of Pharmaceutical Practice ; (6): 24-31, 2024.
Article in Chinese | WPRIM | ID: wpr-1005423

ABSTRACT

Objective To investigate the mechanism of Qizhenziyin mixture in the treatment of hypogonadism by using the network pharmacology approach. Methods The active components of Qizhenziyin mixture were obtained by searching TCMSP ,TCMID and HIT databases.The related targets of candidate compounds were obtained by searching STITCH databases. The potential targets of Qizhenziyin mixture in the treatment of hypogonadism were obtained by mapping the disease genes of hypogonadism with Genecards and DisGeNet databases. The protein interaction platform database (STRING) was used to construct the interaction relationship between action targets. The target protein interaction (PPI) network was constructed by introducing Cytoscape software. The mechanism of Qizhenziyin mixture in the treatment of hypogonadism was explained through the enrichment analysis of GO, KEGG and molecular docking technology. Results A total of 148 drug-disease chemical compounds, 96 drug-disease intersection targets, 1085 disease targets were obtained;the components for treating diseases are: quercetin,kaempferol, luteolin, etc; enrichment analysis of GO revealed 1792 biological processes (BP), 31 cellular components (CC) and 79 molecular functions (MF);the results of KEGG pathway enrichment analysis indicated such as FOXO signaling pathway, prostate cancer, AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, etc.The results of molecular docking showed that kaempferol and LEP had the best and stable binding energy. Conclusion The active components of Qizhenziyin mixture may play a role of the treatment of hypogonadism by improving insulin resistance and the expression of testosterone synthetase of Leydig cells.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 124-132, 2024.
Article in Chinese | WPRIM | ID: wpr-1003774

ABSTRACT

ObjectiveTo analyze the antidepressant quality markers(Q-Marker) of Bupleuri Radix(BP) before and after vinegar-processing by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), multivariate statistical analysis and network pharmacology. MethodUPLC-Q-TOF-MS was used to analyze the chemical basis of raw and vinegar-processed products of BP, and principal component analysis(PCA) orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to identify the differential components in BP that changed significantly before and after vinegar-processing, which were regarded as candidate quality markers(Q-Marker). Then the disease-drug-component-target network related to antidepressant effect of BP was constructed by network pharmacology, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined. Rats were randomly divided into blank group, model group, fluoxetine group(2.67 mg·kg-1) and total saponin group(0.72 mg·kg-1), except the blank group, rats in the other groups were subjected to chronic unpredictable mild stress(CUMS). Three weeks after the start of modeling, rats in each administration group were given the corresponding dose of drugs once a day for 4 weeks, and rats in the blank and model groups were given normal saline with dose of 10 mL·kg-1. At 1 day before modeling, 21 days and 28 days after administration, body mass weighing, sucrose preference test and open field test were performed on each group . After 28 days of administration, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect the mRNA expression levels of phosphatidylinositol 3-kinase(PI3K), protein kinase B(Akt), mammalian target of rapamycin(mTOR), glycogen synthase kinase-3β(GSK-3β), forkhead box transcription factor O3a(FoxO3a) and β-catenin in hippocampal tissues of rats in each group, while protein expression levels of PI3K, Akt, mTOR and FoxO3a in hippocampal tissues of rats in each group were detected by Western blot. ResultThere were 19 components in BP showed significant changes before and after vinegar-processing, and 9 components such as saikosaponin A, saikosaponin B1, saikosaponin B2, saikosaponin C and saikosaponin D were identified as potential Q-Marker through S-plot differential marker screening. Combined with the disease-drug-component-target network, saikosaponin A, saikosaponin B1, saikosaponin B2 and saikosaponin D were identified as antidepressant Q-Marker of raw and vinegar-processed products of BP. According to the results of pharmacodynamic tests, after 28 d of administration, compared with the blank group, the body mass, sucrose preference index and open field total score of rats in model group, fluoxetine group and total saponin group decreased significantly(P<0.01). Compared with the model group, the body mass, sucrose preference index and open field total score in total saponin group increased significantly(P<0.01). Compared with the blank group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the model group decreased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a increased significantly(P<0.05). Compared with the model group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the total saponin group were increased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a decreased significantly(P<0.05). Compared with the blank group, the protein expression levels of Akt and mTOR in hippocampus of the model group decreased significantly(P<0.01), while the protein expression levels of PI3K and FoxO3a increased significantly(P<0.01). Compared with the model group, the expression level of Akt in hippocampus of the total saponin group increased significantly(P<0.01), the mTOR expression level was increased but not statistically significant, while the protein expression levels of PI3K and FoxO3a decreased significantly(P<0.01). ConclusionThe chemical constituents of BP changed greatly after vinegar-processing, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined by chemical basis, pharmacodynamics, network pharmacology and signaling pathway, which provided a reference for further research on quality control, pharmacodynamic substance basis and processing mechanism of BP.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 198-207, 2024.
Article in Chinese | WPRIM | ID: wpr-999177

ABSTRACT

The efficacy of traditional Chinese medicine (TCM) and compound prescriptions is confirmed based on practical experience. It is a highly generalized expression of the clinical characteristics and scope of prescriptions and a unique expression of the medical effects of TCM. Network pharmacology, as a cross-disciplinary field based on the theory of systems biology and multi-level analysis of biological systems, has become a common virtual screening tool in TCM research and gradually developed with the progress in big data and artificial intelligence. In the context of modern medicine, the efficacy of TCM compound prescriptions has a vague concept and lacks scientific evidence. Elucidating the connotation of TCM efficacy and guiding TCM theoretical research has become one of the hotspots and difficulties in TCM research. This article explores the feasibility of using network pharmacology for the research on the efficacy of TCM compound prescriptions and investigates whether the research results can represent part of the efficacy of prescriptions. Furthermore, the research platforms and algorithms in this field are summarized. The research ideas and existing problems in this field are proposed from the aspects of efficacy concept embodiment, target screening, result verification, efficacy network building, and homogenization avoiding of network pharmacology research results. Finally, the future development directions are prospected. This article is expected to provide a reference for exploring the modern biological basis of the efficacy of TCM and compound prescriptions and for the clinical application and theoretical research of TCM.

9.
Indian J Biochem Biophys ; 2023 Feb; 60(2): 108-121
Article | IMSEAR | ID: sea-221619

ABSTRACT

Polycystic Ovary Syndrome (PCOS) is one of the most prevalent endocrine disorder in women of reproductive age characterized by hyperandrogenism (HA). Current treatment options for PCOS are either with adverse effects or ineffective. Saptasaram kashayam (SK), an ayurvedic formulation is often been a safe traditional alternative medicine to improve the PCOS symptoms as well as its pathological development. However, its principle phytoconstituents or underlying mechanisms have not been investigated. In order to achieve this, the current study systematically utilized computational tools, network pharmacology approaches and molecular docking studies. All identified phytoconstituents of SK were screened by QikProp ADME prediction and 47 were selected based on oral bioavailability and drug likeliness scores. Their 3D structures were submitted to three online target fishing webservers PharmMapper, ChemMapper and Swiss Target Prediction which produced 1084 biological targets for SK comprehensively. 350 known PCOS therapeutic targets were retreived as common targets from three different interrogative disease centric bioinformatic platforms DisGeNET, OMIM and GeneCards. Intersection of 1084 biological targets of SK and 350 PCOS therapeutic targets produced, 88 potential therapeutic targets of SK against PCOS. STRING PPI and Compound-Target-Pathway networks were constructed and analysed using Cytoscape software. GO & KEGG pathway enrichment analysis was performed using DAVID database. 15 PCOS therapeutic target proteins were short listed from network analysis report- PIK3CA, PDPK1, AKT1, PIK3R1, STAT3, MAPK1, MAPK3, EGFR, AR, ESR1, ESR2, SHGB, NOS3, F2 & CREBBP. Targets that were likely to be inhibited/modulated by SK for treatment of PCOS were docked against the screened phytoconstituents and their respective standard inhibitors using GLIDE-SP of Schrodinger suite, Maestro version- 13.0. Results showed that Quercetin, Catechin, Boeravinone J, Genistein, Protocatechuic Acid, Gentisic Acid, Xanthoarnol, Luteolin, Boeravinone F, Tyrosine, Kaempferol, Dalbergioidin, etc exhibited good binding affinities when compared to standard drugs and might be responsible for synergistic/additive protective effect of SK against PCOS. Meanwhile PI3K-Akt signaling pathway, Prolactin signaling pathway, AGE-RAG diabetic complications, HIF-1 signaling pathway and Estrogen signaling pathway were found to be involving the hub genes of interest and in this way, they might be intervened during treatment of PCOS by SK. Present study succeeded in identifying the drug like principle phytoconstituents, probable PCOS therapeutic targets and the underlying molecular mechanism of SK apart from providing reliable evidence for therapeutic potential of SK against PCOS. However further validation by in vitro and in vivo investigations is necessary.

10.
Indian J Biochem Biophys ; 2023 Feb; 60(2): 108-121
Article | IMSEAR | ID: sea-221618

ABSTRACT

Polycystic Ovary Syndrome (PCOS) is one of the most prevalent endocrine disorder in women of reproductive age characterized by hyperandrogenism (HA). Current treatment options for PCOS are either with adverse effects or ineffective. Saptasaram kashayam (SK), an ayurvedic formulation is often been a safe traditional alternative medicine to improve the PCOS symptoms as well as its pathological development. However, its principle phytoconstituents or underlying mechanisms have not been investigated. In order to achieve this, the current study systematically utilized computational tools, network pharmacology approaches and molecular docking studies. All identified phytoconstituents of SK were screened by QikProp ADME prediction and 47 were selected based on oral bioavailability and drug likeliness scores. Their 3D structures were submitted to three online target fishing webservers PharmMapper, ChemMapper and Swiss Target Prediction which produced 1084 biological targets for SK comprehensively. 350 known PCOS therapeutic targets were retreived as common targets from three different interrogative disease centric bioinformatic platforms DisGeNET, OMIM and GeneCards. Intersection of 1084 biological targets of SK and 350 PCOS therapeutic targets produced, 88 potential therapeutic targets of SK against PCOS. STRING PPI and Compound-Target-Pathway networks were constructed and analysed using Cytoscape software. GO & KEGG pathway enrichment analysis was performed using DAVID database. 15 PCOS therapeutic target proteins were short listed from network analysis report- PIK3CA, PDPK1, AKT1, PIK3R1, STAT3, MAPK1, MAPK3, EGFR, AR, ESR1, ESR2, SHGB, NOS3, F2 & CREBBP. Targets that were likely to be inhibited/modulated by SK for treatment of PCOS were docked against the screened phytoconstituents and their respective standard inhibitors using GLIDE-SP of Schrodinger suite, Maestro version- 13.0. Results showed that Quercetin, Catechin, Boeravinone J, Genistein, Protocatechuic Acid, Gentisic Acid, Xanthoarnol, Luteolin, Boeravinone F, Tyrosine, Kaempferol, Dalbergioidin, etc exhibited good binding affinities when compared to standard drugs and might be responsible for synergistic/additive protective effect of SK against PCOS. Meanwhile PI3K-Akt signaling pathway, Prolactin signaling pathway, AGE-RAG diabetic complications, HIF-1 signaling pathway and Estrogen signaling pathway were found to be involving the hub genes of interest and in this way, they might be intervened during treatment of PCOS by SK. Present study succeeded in identifying the drug like principle phytoconstituents, probable PCOS therapeutic targets and the underlying molecular mechanism of SK apart from providing reliable evidence for therapeutic potential of SK against PCOS. However further validation by in vitro and in vivo investigations is necessary.

11.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 214-225, 2023.
Article in English | WPRIM | ID: wpr-971679

ABSTRACT

Developing analytical methods for the chemical components of natural medicines remains a challenge due to its diversity and complexity. Miao-Fu-Zhi-Tong (MFZT) granules, an ethnic Yi herbal prescription, comprises 10 herbs and has been clinically applied for gouty arthritis (GA) therapy. Herein, a series of chemical profiling strategies including in-house library matching, molecular networking and MS/MS fragmentation behavior validation based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were developed for qualitative analysis of MFZT granules. A total of 207 compounds were identified or characterized in which several rare guanidines were discovered and profiled into alkyl substituted or cyclic subtypes. Moreover, network pharmacology analysis indicated that MFZT's anti-gout mechanism was mostly associated with the nuclear factor kappa-B (NF-κB) signaling, nucleotide oligomerization domain (NOD)-like signaling and rheumatoid arthritis pathways, along with the synergistic effect of 84 potential active compounds. In addition, a quantitative analytical method was developed to simultaneously determine the 29 potential effective components. Among them, berberine, pellodendrine, 3-feruloylquinic acid, neoastilbin, isoacteoside and chlorogenic acid derivatives at higher concentrations were considered as the chemical markers for quality control. These findings provide a holistic chemical basis for MFZT granules and will support the development of effective analytical methods for the herbal formulas of natural medicines.


Subject(s)
Humans , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/chemistry , Quality Control , Arthritis, Gouty
12.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 197-213, 2023.
Article in English | WPRIM | ID: wpr-971678

ABSTRACT

Angelicae Sinensis Radix (AS) is reproted to exert anti-depression effect (ADE) and nourishing blood effect (NBE) in a rat model of depression. The correlation between the two therapeutic effects and its underlying mechanisms deserves further study. The current study is designed to explore the underlying mechanisms of correlation between the ADE and NBE of AS based on hepatic metabonomics, network pharmacology and molecular docking. According to metabolomics analysis, 30 metabolites involved in 11 metabolic pathways were identified as the potential metabolites for depression. Furthermore, principal component analysis and correlation analysis showed that glutathione, sphinganine, and ornithine were related to pharmacodynamics indicators including behavioral indicators and hematological indicators, indicating that metabolic pathways such as sphingolipid metabolism were involved in the ADE and NBE of AS. Then, a target-pathway network of depression and blood deficiency syndrome was constructed by network pharmacology analysis, where a total of 107 pathways were collected. Moreover, 37 active components obtained from Ultra Performance Liquid Chromatography-Triple-Time of Flight Mass Spectrometer (UPLC-Triple-TOF/MS) in AS extract that passed the filtering criteria were used for network pharmacology, where 46 targets were associated with the ADE and NBE of AS. Pathway enrichment analysis further indicated the involvement of sphingolipid metabolism in the ADE and NBE of AS. Molecular docking analysis indciated that E-ligustilide in AS extract exhibited strong binding activity with target proteins (PIK3CA and PIK3CD) in sphingolipid metabolism. Further analysis by Western blot verified that AS regulated the expression of PIK3CA and PIK3CD on sphingolipid metabolism. Our results demonstrated that sphingolipid metabolic pathway was the core mechanism of the correlation between the ADE and NBE of AS.


Subject(s)
Rats , Animals , Rats, Sprague-Dawley , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/chemistry , Metabolomics/methods , Mass Spectrometry
13.
Chinese journal of integrative medicine ; (12): 280-288, 2023.
Article in English | WPRIM | ID: wpr-971331

ABSTRACT

Psoriasis is a chronic skin disease and an important health concern. Western medicine and therapies are the main treatment strategies for psoriasis vulgaris (PV); however, the overall prognosis of patients with PV is still poor. Therefore, PV prevention is especially crucial. Chinese medicine (CM) has a long history of treating psoriasis, and it has unique wisdom in different cognitive angles and treatment modes from modern medicine. In this review, we first summarized the herbs and ancient CM formulas that have therapeutic effects on PV. Second, the research status and obstacles to the current development of CM in modern medicine were reviewed. Finally, the future of CM in the context of precision medicine and integrated medicine was discussed. After a detailed reading of the abundant literature, we believe that CM, through thousands of years of continuous development and clinical practice, has achieved high effectiveness and safety for PV treatment, despite its surrounding controversy. Moreover, precise analyses and systematic research methods have provided new approaches for the modernization of CM in the future. The treatment of PV with CM is worth popularizing, and we hope it can benefit more patients.


Subject(s)
Humans , Medicine, Chinese Traditional , Drugs, Chinese Herbal/therapeutic use , Psoriasis/therapy , Research Design , Drug Therapy, Combination
14.
Chinese journal of integrative medicine ; (12): 233-243, 2023.
Article in English | WPRIM | ID: wpr-971330

ABSTRACT

OBJECTIVE@#To explore the potential mechanism of Yishen Qutong Granules (YSQTG) for the treatment of esophageal cancer using network pharmacology and experimental research.@*METHODS@#The effective components and molecular mechanism of YSQTG in treating esophageal cancer were expounded based on network pharmacology and molecular docking. The key compound was identified by high-performance liquid chromatography and mass spectrometry (HPLC-MS) to verify the malignant phenotype of the key compounds in the treatment of esophageal cancer. Then, the interaction proteins of key compounds were screened by pull-down assay combined with mass spectrometry. RNA-seq was used to screen the differential genes in the treatment of esophageal cancer by key compounds, and the potential mechanism of key compounds on the main therapeutic targets was verified.@*RESULTS@#Totally 76 effective compounds of YSQTG were found, as well as 309 related targets, and 102 drug and disease interaction targets. The drug-compound-target network of YSQTG was constructed, suggesting that quercetin, luteolin, wogonin, kaempferol and baicalein may be the most important compounds, while quercetin had higher degree value and degree centrality, which might be the key compound in YSQTG. The HPLC-MS results also showed the stable presence of quercetin in YSQTG. By establishing a protein interaction network, the main therapeutic targets of YSQTG in treating esophageal cancer were Jun proto-oncogene, interleukin-6, tumor necrosis factor, and RELA proto-oncogene. The results of cell function experiments in vitro showed that quercetin could inhibit proliferation, invasion, and clonal formation of esophageal carcinoma cells. Quercetin mainly affected the biological processes of esophageal cancer cells, such as proliferation, cell cycle, and cell metastasis. A total of 357 quercetin interacting proteins were screened, and 531 genes were significantly changed. Further pathway enrichment analysis showed that quercetin mainly affects the metabolic pathway, MAPK signaling pathway, and nuclear factor kappa B (NF- κ B) signaling pathway, etc. Quercetin, the key compound of YSQTG, had stronger binding activity by molecular docking. Pull-down assay confirmed that NF- κ B was a quercetin-specific interaction protein, and quercetin could significantly reduce the protein level of NF- κ B, the main therapeutic target.@*CONCLUSION@#YSQTG can be multi-component, multi-target, multi-channel treatment of esophageal cancer, it is a potential drug for the treatment of esophageal cancer.


Subject(s)
Humans , Network Pharmacology , Quercetin , Medicine, Chinese Traditional , Molecular Docking Simulation , Esophageal Neoplasms , Drugs, Chinese Herbal
15.
China Journal of Chinese Materia Medica ; (24): 2500-2511, 2023.
Article in Chinese | WPRIM | ID: wpr-981326

ABSTRACT

This study aimed to elucidate the effect and underlying mechanism of Bovis Calculus in the treatment of ulcerative colitis(UC) through network pharmacological prediction and animal experimental verification. Databases such as BATMAN-TCM were used to mine the potential targets of Bovis Calculus against UC, and the pathway enrichment analysis was conducted. Seventy healthy C57BL/6J mice were randomly divided into a blank group, a model group, a solvent model(2% polysorbate 80) group, a salazosulfapyridine(SASP, 0.40 g·kg~(-1)) group, and high-, medium-, and low-dose Bovis Calculus Sativus(BCS, 0.20, 0.10, and 0.05 g·kg~(-1)) groups according to the body weight. The UC model was established in mice by drinking 3% dextran sulfate sodium(DSS) solution for 7 days. The mice in the groups with drug intervention received corresponding drugs for 3 days before modeling by gavage, and continued to take drugs for 7 days while modeling(continuous administration for 10 days). During the experiment, the body weight of mice was observed, and the disease activity index(DAI) score was recorded. After 7 days of modeling, the colon length was mea-sured, and the pathological changes in colon tissues were observed by hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), and interleukin-17(IL-17) in colon tissues of mice were detected by enzyme-linked immunosorbent assay(ELISA). The mRNA expression of IL-17, IL-17RA, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, CXCL2, and CXCL10 was evaluated by real-time polymerase chain reaction(RT-PCR). The protein expression of IL-17, IL-17RA, Act1, p-p38 MAPK, and p-ERK1/2 was investigated by Western blot. The results of network pharmacological prediction showed that Bovis Calculus might play a therapeutic role through the IL-17 signaling pathway and the TNF signaling pathway. As revealed by the results of animal experiments, on the 10th day of drug administration, compared with the solvent model group, all the BCS groups showed significantly increased body weight, decreased DAI score, increased colon length, improved pathological damage of colon mucosa, and significantly inhibited expression of TNF-α,IL-6,IL-1β, and IL-17 in colon tissues. The high-dose BCS(0.20 g·kg~(-1)) could significantly reduce the mRNA expression levels of IL-17, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, and CXCL2 in colon tissues of UC model mice, tend to down-regulate mRNA expression levels of IL-17RA and CXCL10, significantly inhibit the protein expression of IL-17RA,Act1,and p-ERK1/2, and tend to decrease the protein expression of IL-17 and p-p38 MAPK. This study, for the first time from the whole-organ-tissue-molecular level, reveals that BCS may reduce the expression of pro-inflammatory cytokines and chemokines by inhibiting the IL-17/IL-17RA/Act1 signaling pathway, thereby improving the inflammatory injury of colon tissues in DSS-induced UC mice and exerting the effect of clearing heat and removing toxins.


Subject(s)
Mice , Animals , Colitis, Ulcerative/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Interleukin-17/pharmacology , TNF Receptor-Associated Factor 2/pharmacology , TNF Receptor-Associated Factor 5/metabolism , Mice, Inbred C57BL , Signal Transduction , Colon , p38 Mitogen-Activated Protein Kinases/metabolism , RNA, Messenger/metabolism , Dextran Sulfate/metabolism , Disease Models, Animal
16.
China Journal of Chinese Materia Medica ; (24): 2352-2359, 2023.
Article in Chinese | WPRIM | ID: wpr-981311

ABSTRACT

This study aims to explore the mechanism of Yanghe Decoction(YHD) against subcutaneous tumor in pulmonary metastasis from breast cancer, which is expected to lay a basis for the treatment of breast carcinoma with YHD. The chemical components of medicinals in YHD, and the targets of the components were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The disease-related targets were searched from GeneCards and Online Mendelian Inheritance in Man(OMIM). Excel was employed to screen the common targets and plot the Venn diagram. The protein-protein interaction network was constructed. R language was used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. A total of 53 female SPF Bablc/6 mice were randomized into normal group(same volume of normal saline, ig), model group(same volume of normal saline, ig), and low-dose and high-dose YHD groups(YHD, ig, 30 days), with 8 mice in normal group and 15 mice in each of the other groups. Body weight and tumor size was measured every day. Curves for body weight variation and growth of tumor in situ were plotted. In the end, the subcutaneous tumor sample was collected and observed based on hematoxylin and eosin(HE) staining. The mRNA and protein levels of hypoxia inducible factor-1α(HIF-1α), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), and glucose transporter type 1(GLUT1) were detected by PCR and Western blot. A total of 213 active components of YHD and 185 targets against the disease were screened out. The hypothesis that YHD may regulate glycolysis through HIF-1α signaling pathway to intervene in breast cancer was proposed. Animal experiment confirmed that the mRNA and protein levels of HIF-1α, PKM2, LDHA, and GLUT1 in the high-and low-dose YHD groups were lower than those in the model group. YHD has certain inhibitory effect on subcutaneous tumor in pulmonary metastasis from breast cancer in the early stage, which may intervene pulmonary metastasis from breast cancer by regulating glycolysis through HIF-1α signaling pathway.


Subject(s)
Female , Mice , Animals , Glucose Transporter Type 1/genetics , Network Pharmacology , Animal Experimentation , Saline Solution , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Signal Transduction , Glycolysis , RNA, Messenger , Neoplasms/drug therapy , Molecular Docking Simulation
17.
West China Journal of Stomatology ; (6): 157-164, 2023.
Article in English | WPRIM | ID: wpr-981107

ABSTRACT

OBJECTIVES@#This study aims to explore the therapeutic targets of curcumin in periodontitis through network pharmacology and molecular docking technology.@*METHODS@#Targets of curcumin and periodontitis were predicted by different databases, and the protein-protein interaction (PPI) network constructed by String revealed the interaction between curcumin and periodontitis. The key target genes were screened for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Molecular docking was performed to analyze the binding potential of curcumin to periodontitis.@*RESULTS@#A total of 672 periodontitis-related disease targets and 107 curcumin-acting targets were obtained from the databases, and 20 key targets were screened. The GO and KEGG analyses of the 20 targets showed that curcumin might play a therapeutic role through the hypoxia-inducible factor (HIF)-1 and parathyroid hormone (PTH) signaling pathways. Molecular docking analysis showed that curcumin had good binding potential with multiple targets.@*CONCLUSIONS@#The potential key targets and molecular mechanisms of curcumin in treating periodontitis provide a theoretical basis for new drug development and clinical applications.


Subject(s)
Humans , Network Pharmacology , Curcumin/therapeutic use , Molecular Docking Simulation , Periodontitis/drug therapy , Drugs, Chinese Herbal , Medicine, Chinese Traditional
18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 168-175, 2023.
Article in Chinese | WPRIM | ID: wpr-984595

ABSTRACT

ObjectiveTo characterize the efficacy components of Guizhi Jia Gegentang(GGT) in intervening influenza virus pneumonia by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS). MethodBALB/c mice were randomly divided into normal group and GGT group(36 g·kg-1·d-1) with six mice in each group. GGT group was continuously administered GGT extract for 5 d, while the normal group was administered an equal amount of ultrapure water. Serum and lung tissue were collected after administration, and UPLC-Q-Exactive Orbitrap MS was used to characterize the prototypical and metabolic components of GGT in serum and lung tissue of mice. The components existed simultaneously in the serum and lung tissue of mice from the GGT group were defined as its functional components, and the targets of efficacy components were searched by SwissTargetPrediction database, and GeneCards database was used to query the target of influenza virus pneumonia, and then the intersection was taken to obtain potential targets of GGT for intervening in the disease. Protein-protein interaction(PPI) network analysis of potential targets was performed by STRING database, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis on potential targets was performed by Metascape. ResultA total of 29 prototypical components and 28 metabolic components of GGT were detected in the drug-containing serum of mice, of which 11 prototypical components and 4 metabolic components were detected in the lung tissue of mice. The main metabolic pathways included reduction, hydroxylation, methylation, glucuronidation and sulfation. The results of PPI network and KEGG analysis showed that these functional components may act through their effects on targets such as albumin(ALB), epidermal growth factor receptor(EGFR), steroid receptor coactivator(SRC), Toll-like receptor 4(TLR4), nuclear transcription factor(NF)-κB and adhesion junction. ConclusionThe 11 prototypical components and 4 metabolites present simultaneously in the drug-containing serum and lung tissue of mice may be the potential therapeutic components of GGT in interfering with influenza viral pneumonia, and act through interfering with inflammatory metabolic pathways. This study can provide a reference for the mechanism study of GGT in the treatment of influenza viral pneumonia.

19.
Journal of Pharmaceutical Practice ; (6): 485-491, 2023.
Article in Chinese | WPRIM | ID: wpr-984557

ABSTRACT

Objective To explore the possible mechanism of Radix Paeoniae Alba on hepatic fibrosis based on network pharmacology. Methods Tcmsp database was used to screen the active components of Paeonia alba. With the help of PubChem and Swiss target prediction database, the potential action targets of the effective components of Paeonia Alba were predicted. GeneCards and OMIM databases were used to screen the corresponding targets of liver fibrosis, and venn2.1.0 was used to obtain the common targets of white peony and liver fibrosis. Cytoscape 3.9.0 software was used to build the network diagram of “white peony - active ingredients - intersection target - liver fibrosis” and to predict the main active sites. String database was used to draw the PPI network. Go analysis of effective targets and enrichment analysis of KEGG in pathway were performed by David database. Results Six effective components, 213 targets of Paeonia Alba and 155 hepatic fibrosis targets were screened. There were 49 targets of Radix Paeoniae Alba in the treatment of liver fibrosis. The main active ingredients are kaempferol, paeoniflorin, mairin and β-Sitosterol. Go enrichment analysis showed 269 biological processes, 30 cell compositions, 64 molecular functions, and 67 pathways in KEGG pathway enrichment analysis. Conclusion The mechanism of anti-hepatic fibrosis of Radix Paeoniae Alba has been preliminarily studied through network pharmacology, which shows that Radix Paeoniae Alba has multi-component, multi-target, and multi-channel effects, and provides reference for further experimental research.

20.
Journal of Chinese Physician ; (12): 348-354,359, 2023.
Article in Chinese | WPRIM | ID: wpr-992306

ABSTRACT

Objective:To explore the key targets and mechanism of Bielong Ruangan decoction in the treatment of liver cancer based on network pharmacology and molecular docking.Methods:Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, PubChem database and PharmMapper database were used to search and screen the chemical components and related targets of Bielong Ruangan decoction and the targets of liver cancer diseases. The network diagram of " Bielong Ruangan decoction-traditional Chinese medicine-active ingredient-predicted target-disease" was constructed; Protein-protein interaction (PPI) network were analyzed through String database; gene ontology (GO) enrichment analysis was performed through WebGestalt database; Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was carried out through KEGG Orthology Based Annotation System (KOBAS) database; Molecular docking of the active components and core target proteins of Bielong Ruangan decoction was carried out by using PyMOL, Auto DockVina and other software.Results:Bielong Ruangan decoction had 67 active components, 154 liver cancer targets and 244 pathways. According to the analysis of network pharmacology, Bielong Ruangan decoction may play an anti-cancer role through key targets such as epidermal growth factor receptor (EGFR), mitogen activated protein kinase 1 (MAPK1), estrogen receptor 1 (ESR1), MAPK8, serine threonine protein kinase 1 (AKT1), MAPK14, cysteine protease 3 (CASP3), cyclin-dependent kinase 2 (CDK2), bone morphogenetic protein 2 (BMP2), aldose reductase (AKR1B1) and other key targets. KEGG enrichment analysis showed that the treatment of liver cancer by Bielong Ruangan decoction involved the regulation of vascular endothelial growth factor (VEGF) signaling pathway, tumor necrosis factor (TNF) signaling pathway, thyroid hormone signaling pathway, T cell receptor signaling pathway and other pathways. The results of molecular docking showed that the binding energy of all compounds to protein was less than -5.6 kcal/mol, indicating that each compound and each protein could bind well.Conclusions:Bielong Ruangan decoction participates in the treatment of liver cancer through " multi-component, multi-target and multi-channel" ways, and plays an anti-cancer role mainly by regulating the proliferation and invasion of tumor cells and tumor inflammatory microenvironment.

SELECTION OF CITATIONS
SEARCH DETAIL